Combined Cycle Gas Turbines

Combined cycle is a term used when a power producing engine or plant employs more than one thermodynamic cycle. Heat engines are only able to use a portion of the energy their fuel generates (usually less than 30%). The remaining heat from combustion is generally wasted. Combining two or more "cycles" such as the Brayton cycle and Rankine cycle results in improved overall efficiency. In a combined cycle power plant (CCPP) or combined cycle gas turbine (CCGT) plant a gas turbine generator generates electricity and the waste heat from the gas turbine is used to make steam to generate additional electricity via a steam turbine; this last step enhances the efficiency of electricity generation. Most new gas power plants are of this type. In a thermal power plant, high-temperature heat as input to the power plant, usually from burning of fuel, is converted to electricity as one of the outputs and low-temperature heat as another output. As a rule, in order to achieve high efficiency, the temperature of the input heat should be as high as possible and the temperature of the output heat as low as possible (see Carnot efficiency). This is achieved by combining the Rankine (steam) and Brayton (gas) thermodynamic cycles. Such an arrangement used for marine propulsion is called COmbined Gas (turbine) And Steam (turbine) (COGAS).